Package: peakPantheR
Authors: Arnaud Wolfer, Goncalo Correia
The peakPantheR
package is designed for the detection,
integration and reporting of pre-defined features in MS files
(e.g. compounds, fragments, adducts, …).
The Parallel Annotation is set to detect and integrate multiple compounds in multiple files in parallel and store results in a single object. It can be employed to integrate a large number of expected features across a dataset.
Using the faahKO raw MS dataset as an example, this vignette will:
Parallel compound integration is set to process multiple compounds in multiple files in parallel, and store results in a single object.
To achieve this, peakPantheR
will:
Diagram of the workflow and functions used for parallel annotation.
We can target 2 pre-defined features in 6 raw MS spectra file from
the faahKO
package using peakPantheR_parallelAnnotation()
. For more
details on the installation and input data employed, please consult the
Getting Started with peakPantheR
vignette.
First the paths to 3 MS file from the faahKO are located and used as input spectras. In this example these 3 samples are considered as representative of the whole run (e.g. Quality Control samples):
library(faahKO)
## file paths
input_spectraPaths <- c(system.file('cdf/KO/ko15.CDF', package = "faahKO"),
system.file('cdf/KO/ko16.CDF', package = "faahKO"),
system.file('cdf/KO/ko18.CDF', package = "faahKO"))
input_spectraPaths
#> [1] "C:/R/win-library/4.3/faahKO/cdf/KO/ko15.CDF"
#> [2] "C:/R/win-library/4.3/faahKO/cdf/KO/ko16.CDF"
#> [3] "C:/R/win-library/4.3/faahKO/cdf/KO/ko18.CDF"
Two targeted features (e.g. compounds, fragments, adducts, …) are defined and stored in a table with as columns:
cpdID
(character)cpdName
(character)rtMin
(sec)rtMax
(sec)rt
(sec, optional / NA
)mzMin
(m/z)mzMax
(m/z)mz
(m/z, optional / NA
)
# targetFeatTable
input_targetFeatTable <- data.frame(matrix(vector(), 2, 8, dimnames=list(c(),
c("cpdID", "cpdName", "rtMin", "rt", "rtMax", "mzMin",
"mz", "mzMax"))), stringsAsFactors=FALSE)
input_targetFeatTable[1,] <- c("ID-1", "Cpd 1", 3310., 3344.888, 3390.,
522.194778, 522.2, 522.205222)
input_targetFeatTable[2,] <- c("ID-2", "Cpd 2", 3280., 3385.577, 3440.,
496.195038, 496.2, 496.204962)
input_targetFeatTable[,c(3:8)] <- sapply(input_targetFeatTable[,c(3:8)],
as.numeric)
cpdID | cpdName | rtMin | rt | rtMax | mzMin | mz | mzMax |
---|---|---|---|---|---|---|---|
ID-1 | Cpd 1 | 3310 | 3344.888 | 3390 | 522.194778 | 522.2 | 522.205222 |
ID-2 | Cpd 2 | 3280 | 3385.577 | 3440 | 496.195038 | 496.2 | 496.204962 |
Additional compound and spectra metadata can be provided but isn’t employed during the fitting procedure:
# spectra Metadata
input_spectraMetadata <- data.frame(matrix(c("sample type 1", "sample type 2",
"sample type 1"), 3, 1,
dimnames=list(c(),c("sampleType"))),
stringsAsFactors=FALSE)
sampleType |
---|
sample type 1 |
sample type 2 |
sample type 1 |
A peakPantheRAnnotation
object is first initialised with
the path to the files to process (spectraPaths
), features
to integrate (targetFeatTable
) and additional information
and parameters such as spectraMetadata
, uROI
,
FIR
and if they should be used (useUROI=TRUE
,
useFIR=TRUE
):
library(peakPantheR)
init_annotation <- peakPantheRAnnotation(spectraPaths = input_spectraPaths,
targetFeatTable = input_targetFeatTable,
spectraMetadata = input_spectraMetadata)
The resulting peakPantheRAnnotation
object is not
annotated, does not contain and use uROI
and
FIR
init_annotation
#> An object of class peakPantheRAnnotation
#> 2 compounds in 3 samples.
#> updated ROI do not exist (uROI)
#> does not use updated ROI (uROI)
#> does not use fallback integration regions (FIR)
#> is not annotated
peakPantheR_parallelAnnotation()
will run the annotation
across files in parallel (if ncores
>0) and return the
successful annotations (result$annotation
) and failures
(result$failures
):
# annotate files serially
annotation_result <- peakPantheR_parallelAnnotation(init_annotation, ncores=0,
curveModel='skewedGaussian',
verbose=TRUE)
#> Processing 2 compounds in 3 samples:
#> uROI: FALSE
#> FIR: FALSE
#> ----- ko15 -----
#> Polarity can not be extracted from netCDF files, please set manually the polarity with the 'polarity' method.
#> Check input, mzMLPath must be a .mzML
#> Reading data from 2 windows
#> Data read in: 1.25 secs
#> Warning: rtMin/rtMax outside of ROI; datapoints cannot be used for mzMin/mzMax calculation, approximate mz and returning ROI$mzMin and ROI$mzMax for ROI #1
#> Found 2/2 features in 0.02 secs
#> Peak statistics done in: 0 secs
#> Feature search done in: 1.75 secs
#> ----- ko16 -----
#> Polarity can not be extracted from netCDF files, please set manually the polarity with the 'polarity' method.
#> Check input, mzMLPath must be a .mzML
#> Reading data from 2 windows
#> Data read in: 1.22 secs
#> Warning: rtMin/rtMax outside of ROI; datapoints cannot be used for mzMin/mzMax calculation, approximate mz and returning ROI$mzMin and ROI$mzMax for ROI #1
#> Warning: rtMin/rtMax outside of ROI; datapoints cannot be used for mzMin/mzMax calculation, approximate mz and returning ROI$mzMin and ROI$mzMax for ROI #2
#> Found 2/2 features in 0.01 secs
#> Peak statistics done in: 0 secs
#> Feature search done in: 1.66 secs
#> ----- ko18 -----
#> Polarity can not be extracted from netCDF files, please set manually the polarity with the 'polarity' method.
#> Check input, mzMLPath must be a .mzML
#> Reading data from 2 windows
#> Data read in: 1.2 secs
#> Warning: rtMin/rtMax outside of ROI; datapoints cannot be used for mzMin/mzMax calculation, approximate mz and returning ROI$mzMin and ROI$mzMax for ROI #1
#> Warning: rtMin/rtMax outside of ROI; datapoints cannot be used for mzMin/mzMax calculation, approximate mz and returning ROI$mzMin and ROI$mzMax for ROI #2
#> Found 2/2 features in 0.01 secs
#> Peak statistics done in: 0 secs
#> Feature search done in: 1.64 secs
#> Annotation object cannot be reordered by sample acquisition date
#> ----------------
#> Parallel annotation done in: 6.15 secs
#> 0 failure(s)
# successful fit
nbSamples(annotation_result$annotation)
#> [1] 3
data_annotation <- annotation_result$annotation
data_annotation
#> An object of class peakPantheRAnnotation
#> 2 compounds in 3 samples.
#> updated ROI do not exist (uROI)
#> does not use updated ROI (uROI)
#> does not use fallback integration regions (FIR)
#> is annotated
# list failed fit
annotation_result$failures
#> [1] file error
#> <0 rows> (or 0-length row.names)
Based on the fit results, updated ROI (uROI
) and
fallback integration region (FIR
) can be automatically
determined using annotationParamsDiagnostic()
:
uROI
are established as the min/max (rt
and m/z
) of the found peaks (+/- 5% in RT)FIR
are established as the median of found
rtMin
, rtMax
, mzMin
,
mzMax
updated_annotation <- annotationParamsDiagnostic(data_annotation, verbose=TRUE)
#> uROI will be set as mimimum/maximum of found peaks (+/-5% of ROI in retention time)
#> FIR will be calculated as the median of found "rtMin","rtMax","mzMin","mzMax"
# uROI now exist
updated_annotation
#> An object of class peakPantheRAnnotation
#> 2 compounds in 3 samples.
#> updated ROI exist (uROI)
#> does not use updated ROI (uROI)
#> does not use fallback integration regions (FIR)
#> is annotated
outputAnnotationDiagnostic()
will save to disk
annotationParameters_summary.csv
containing the original
ROI
and newly determined uROI
and
FIR
for manual validation. Additionnaly a diagnostic plot
for each compound is saved for reference and can be generated in
parallel with the argument ncores
:
# create a colourScale based on the sampleType
uniq_sType <- sort(unique(spectraMetadata(updated_annotation)$sampleType),
na.last=TRUE)
col_sType <- unname( setNames(c('blue', 'red'),
c(uniq_sType))[spectraMetadata(updated_annotation)$sampleType] )
# create a temporary location to save the diagnotic (otherwise provide the path
# to the selected location)
output_folder <- tempdir()
# output fit diagnostic to disk
outputAnnotationDiagnostic(updated_annotation, saveFolder=output_folder,
savePlots=TRUE, sampleColour=col_sType,
verbose=TRUE, ncores=2)
The data saved in annotationParameters_summary.csv
is as
follow:
cpdID | cpdName | X | ROI_rt | ROI_mz | ROI_rtMin | ROI_rtMax | ROI_mzMin |
---|---|---|---|---|---|---|---|
ID-1 | Cpd 1 | | | 3344.888 | 522.2 | 3310 | 3390 | 522.194778 |
ID-2 | Cpd 2 | | | 3385.577 | 496.2 | 3280 | 3440 | 496.195038 |
ROI_mzMax | X | uROI_rtMin | uROI_rtMax | uROI_mzMin | uROI_mzMax | uROI_rt |
---|---|---|---|---|---|---|
522.205222 | | | 3305.75893 | 3411.43628 | 522.194778 | 522.205222 | 3344.888 |
496.204962 | | | 3337.37666 | 3462.44903 | 496.195038 | 496.204962 | 3385.577 |
uROI_mz | X | FIR_rtMin | FIR_rtMax | FIR_mzMin | FIR_mzMax |
---|---|---|---|---|---|
522.2 | | | 3326.10635 | 3407.27265 | 522.194778 | 522.205222 |
496.2 | | | 3365.02386 | 3453.40496 | 496.195038 | 496.204962 |
Diagnostic plot for compound 1: The top panel is an overlay of the extracted EIC across all samples with the fitted curve as dotted line. The panel under the EIC represent each found peak RT peakwidth (
rtMin
,rtMax
and apex marked as dot), ordered with the first sample at the top. The bottom 3 panels represent foundRT
(peakwidth),m/z
(peakwidth) andpeak area
by run order, with the corresponding histograms to the right
ROI
exported to .csv
can be updated based
on the diagnostic plots; uROI
(updated ROI potentially used
for all samples) and FIR
(fallback integration regions for
when no peak is found) can also be tweaked to better fit the peaks.
The optional retentionTimeCorrection()
method provides
an interface to adjust the expected ROI rt values and account for
chromatographic batch effects. By comparing expected and found rt values
for a set of reference compounds, a model of the chromatographic shift
for the present batch can be established. This model can be in turned
used to correct the expected retention time of all targeted compounds.
In order to apply this method, the peakPantheRAnnotation
must be previously annotated (isAnnotated=TRUE
). The
retention time correction algorithm to use can be selected using the
method
argument (currently polynomial
and
constant
methods are available).
retentionTimeCorrection()
fits a correction function to
model the dependency of the mean rt_dev_sec
per reference
feature with the expected databased retention time. If
useUROI=TRUE
, the expected retention time value is taken
from the UROI_rt
field, otherwise ROI_rt
is
used. If robust=TRUE
, the RANSAC algorithm is used to
automatically detect outliers and exclude them from the fit (this should
only be used with a large number of reference features).
retentionTimeCorrection()
returns a list with 2 elements: *
a modified peakPantheRAnnotation
object * a
ggplot2
diagnostic plot (optional, depending on whether
TRUE
or FALSE
is passed to the
diagnostic
argument). The returned
peakPantheRAnnotation
object contains the same
uROI
and FIR
mz
values as the
original annotation, but the retention time related parameters
(rt
, rtMin
and rtMax
) are
replaced by the adjusted values. The rtMax
and
rtMin
are set as the corrected rt
value plus
or minus half the value passed to the rtWindowWidth
argument, respectively. useUROI
is also set to TRUE. To
continue with the workflow, simply set a new annotation object with the
fit parameters established by retentionTimeCorrection()
and
call peakPantheR_parallelAnnotation()
for the final
annotation.
#> Warning in applyRTCorrection_checkInputParams(params, method, referenceTable):
#> `polynomialOrder` is larger than the number of references passed.
#> `polynomialOrder` will be set equal to number of reference compounds - 1
Following this manual validation of the fit on reference samples, the
modified parameters in the .csv
file can be reloaded and
applied to all study samples.
peakPantheR_loadAnnotationParamsCSV()
will load the new
.csv
parameters (as generated by
outputAnnotationDiagnostic()
) and initialise a
peakPantheRAnnotation
object without
spectraPaths
, spectraMetadata
or
cpdMetadata
which will need to be added before annotation.
useUROI
and useFIR
are set to
FALSE
by default and will need to be modified according to
the analysis to run. uROIExist
is established depending on
the .csv
uROI column, and will only be set to TRUE if no
NA
are present. It is possible to reset the
FIR
values with the uROI
windows using
resetFIR()
.
update_csv_path <- '/path_to_new_csv/'
# load csv
new_annotation <- peakPantheR_loadAnnotationParamsCSV(update_csv_path)
#> uROIExist set to TRUE
#> New peakPantheRAnnotation object initialised for 2 compounds
new_annotation
#> An object of class peakPantheRAnnotation
#> 2 compounds in 0 samples.
#> updated ROI exist (uROI)
#> does not use updated ROI (uROI)
#> does not use fallback integration regions (FIR)
#> is not annotated
new_annotation <- resetFIR(new_annotation)
#> FIR will be reset with uROI values
Now that the fit parameters were set on 3 representative samples
(e.g. QC), the same processing can be applied to all study samples.
resetAnnotation()
will reinitialise all the results and
modify the samples or compounds targeted as required:
## new files
new_spectraPaths <- c(system.file('cdf/KO/ko15.CDF', package = "faahKO"),
system.file('cdf/WT/wt15.CDF', package = "faahKO"),
system.file('cdf/KO/ko16.CDF', package = "faahKO"),
system.file('cdf/WT/wt16.CDF', package = "faahKO"),
system.file('cdf/KO/ko18.CDF', package = "faahKO"),
system.file('cdf/WT/wt18.CDF', package = "faahKO"))
new_spectraPaths
#> [1] "C:/R/win-library/4.3/faahKO/cdf/KO/ko15.CDF"
#> [2] "C:/R/win-library/4.3/faahKO/cdf/WT/wt15.CDF"
#> [3] "C:/R/win-library/4.3/faahKO/cdf/KO/ko16.CDF"
#> [4] "C:/R/win-library/4.3/faahKO/cdf/WT/wt16.CDF"
#> [5] "C:/R/win-library/4.3/faahKO/cdf/KO/ko18.CDF"
#> [6] "C:/R/win-library/4.3/faahKO/cdf/WT/wt18.CDF"
Below we define the metadata of these new samples:
## new spectra metadata
new_spectraMetadata <- data.frame(matrix(c("KO", "WT", "KO", "WT", "KO", "WT"),
6, 1, dimnames=list(c(), c("Group"))),
stringsAsFactors=FALSE)
Group |
---|
KO |
WT |
KO |
WT |
KO |
WT |
## add new samples to the annotation loaded from csv, useUROI, useFIR
new_annotation <- resetAnnotation(new_annotation, spectraPaths=new_spectraPaths,
spectraMetadata=new_spectraMetadata,
useUROI=TRUE, useFIR=TRUE)
#> peakPantheRAnnotation object being reset:
#> Previous "ROI", "cpdID" and "cpdName" value kept
#> Previous "uROI" value kept
#> Previous "FIR" value kept
#> Previous "cpdMetadata" value kept
#> New "spectraPaths" value set
#> New "spectraMetadata" value set
#> Previous "uROIExist" value kept
#> New "useUROI" value set
#> New "useFIR" value set
new_annotation
#> An object of class peakPantheRAnnotation
#> 2 compounds in 6 samples.
#> updated ROI exist (uROI)
#> uses updated ROI (uROI)
#> uses fallback integration regions (FIR)
#> is not annotated
We can now run the final annotation on all samples with the optimised targeted features:
# annotate files serially
new_annotation_result <- peakPantheR_parallelAnnotation(new_annotation,
ncores=0, verbose=FALSE)
#> Polarity can not be extracted from netCDF files, please set manually the polarity with the 'polarity' method.
#> Warning in minpack.lm::nls.lm(par = init, lower = lower, upper = upper, : lmdif: info = -1. Number of iterations has reached `maxiter' == 50.
#> Polarity can not be extracted from netCDF files, please set manually the polarity with the 'polarity' method.
#> Polarity can not be extracted from netCDF files, please set manually the polarity with the 'polarity' method.
#> Fit of ROI #1 is unsuccessful (cannot determine rtMin/rtMax)
#> Polarity can not be extracted from netCDF files, please set manually the polarity with the 'polarity' method.
#> Warning in minpack.lm::nls.lm(par = init, lower = lower, upper = upper, : lmdif: info = -1. Number of iterations has reached `maxiter' == 50.
#> Polarity can not be extracted from netCDF files, please set manually the polarity with the 'polarity' method.
#> Warning in min(tmpPt$mz): no non-missing arguments to min; returning Inf
#> Warning in max(tmpPt$mz): no non-missing arguments to max; returning -Inf
#> Polarity can not be extracted from netCDF files, please set manually the polarity with the 'polarity' method.
#> Warning in minpack.lm::nls.lm(par = init, lower = lower, upper = upper, : lmdif: info = -1. Number of iterations has reached `maxiter' == 50.
# successful fit
nbSamples(new_annotation_result$annotation)
#> [1] 6
final_annotation <- new_annotation_result$annotation
final_annotation
#> An object of class peakPantheRAnnotation
#> 2 compounds in 6 samples.
#> updated ROI exist (uROI)
#> uses updated ROI (uROI)
#> uses fallback integration regions (FIR)
#> is annotated
# list failed fit
new_annotation_result$failures
#> [1] file error
#> <0 rows> (or 0-length row.names)
The final fits can be saved to disk with
outputAnnotationDiagnostic()
:
# create a colourScale based on the sampleType
uniq_group <- sort(unique(spectraMetadata(final_annotation)$Group),na.last=TRUE)
col_group <- unname( setNames(c('blue', 'red'),
c(uniq_sType))[spectraMetadata(final_annotation)$Group] )
# create a temporary location to save the diagnotic (otherwise provide the path
# to the selected location)
final_output_folder <- tempdir()
# output fit diagnostic to disk
outputAnnotationDiagnostic(final_annotation, saveFolder=final_output_folder,
savePlots=TRUE, sampleColour=col_group, verbose=TRUE)
For each processed sample, a peakTables
contains all the
fit information for all compounds targeted.
annotationTable( , column)
will group the values across all
samples and compounds for any peakTables
column:
# peakTables for the first sample
peakTables(final_annotation)[[1]]
found | rtMin | rt | rtMax | mzMin | mz | mzMax | peakArea | peakAreaRaw |
---|---|---|---|---|---|---|---|---|
TRUE | 3322 | 3337 | 3337 | 522.2 | 522.2 | 522.2 | 4289965 | 4289965 |
TRUE | 3363 | 3378 | 3378 | 496.2 | 496.2 | 496.2 | 7312556 | 7312556 |
maxIntMeasured | maxIntPredicted | is_filled | ppm_error | rt_dev_sec |
---|---|---|---|---|
711872 | NA | TRUE | NA | NA |
982976 | NA | TRUE | NA | NA |
tailingFactor | asymmetryFactor | cpdID | cpdName |
---|---|---|---|
NA | NA | ID-1 | Cpd 1 |
NA | NA | ID-2 | Cpd 2 |
# Extract the found peak area for all compounds and all samples
annotationTable(final_annotation, column='peakArea')
ID-1 | |
---|---|
C:/R/win-library/4.3/faahKO/cdf/KO/ko15.CDF | 4289965 |
C:/R/win-library/4.3/faahKO/cdf/WT/wt15.CDF | 4355690 |
C:/R/win-library/4.3/faahKO/cdf/KO/ko16.CDF | 46184 |
C:/R/win-library/4.3/faahKO/cdf/WT/wt16.CDF | 28157 |
C:/R/win-library/4.3/faahKO/cdf/KO/ko18.CDF | 141309 |
C:/R/win-library/4.3/faahKO/cdf/WT/wt18.CDF | 101738 |
ID-2 | |
---|---|
C:/R/win-library/4.3/faahKO/cdf/KO/ko15.CDF | 7312556 |
C:/R/win-library/4.3/faahKO/cdf/WT/wt15.CDF | 9278578 |
C:/R/win-library/4.3/faahKO/cdf/KO/ko16.CDF | 473801 |
C:/R/win-library/4.3/faahKO/cdf/WT/wt16.CDF | 475297 |
C:/R/win-library/4.3/faahKO/cdf/KO/ko18.CDF | 743452 |
C:/R/win-library/4.3/faahKO/cdf/WT/wt18.CDF | 1480713 |
Finally all annotation results can be saved to disk as
.csv
with outputAnnotationResult()
. These
.csv
will contain the compound metadata, spectra metadata
and a file for each column of peakTables (with samples as rows and
compounds as columns):
# create a temporary location to save the diagnotic (otherwise provide the path
# to the selected location)
final_output_folder <- tempdir()
# save
outputAnnotationResult(final_annotation, saveFolder=final_output_folder,
annotationName='ProjectName', verbose=TRUE)
#> Compound metadata saved at /final_output_folder/ProjectName_cpdMetadata.csv
#> Spectra metadata saved at
#> /final_output_folder/ProjectName_spectraMetadata.csv
#> Peak measurement "found" saved at /final_output_folder/ProjectName_found.csv
#> Peak measurement "rtMin" saved at /final_output_folder/ProjectName_rtMin.csv
#> Peak measurement "rt" saved at /final_output_folder/ProjectName_rt.csv
#> Peak measurement "rtMax" saved at /final_output_folder/ProjectName_rtMax.csv
#> Peak measurement "mzMin" saved at /final_output_folder/ProjectName_mzMin.csv
#> Peak measurement "mz" saved at /final_output_folder/ProjectName_mz.csv
#> Peak measurement "mzMax" saved at /final_output_folder/ProjectName_mzMax.csv
#> Peak measurement "peakArea" saved at
#> /final_output_folder/ProjectName_peakArea.csv
#> Peak measurement "maxIntMeasured" saved at
#> /final_output_folder/ProjectName_maxIntMeasured.csv
#> Peak measurement "maxIntPredicted" saved at
#> /final_output_folder/ProjectName_maxIntPredicted.csv
#> Peak measurement "is_filled" saved at
#> /final_output_folder/ProjectName_is_filled.csv
#> Peak measurement "ppm_error" saved at
#> /final_output_folder/ProjectName_ppm_error.csv
#> Peak measurement "rt_dev_sec" saved at
#> /final_output_folder/ProjectName_rt_dev_sec.csv
#> Peak measurement "tailingFactor" saved at
#> /final_output_folder/ProjectName_tailingFactor.csv
#> Peak measurement "asymmetryFactor" saved at
#> /final_output_folder/ProjectName_asymmetryFactor.csv
#> Summary saved at /final_output_folder/ProjectName_summary.csv
#> ─ Session info ───────────────────────────────────────────────────────────────
#> setting value
#> version R version 4.3.2 (2023-10-31 ucrt)
#> os Windows 11 x64 (build 22621)
#> system x86_64, mingw32
#> ui RTerm
#> language en
#> collate English_United Kingdom.utf8
#> ctype English_United Kingdom.utf8
#> tz Europe/Paris
#> date 2023-11-05
#> pandoc 3.1.1 @ C:/Program Files/RStudio/resources/app/bin/quarto/bin/tools/ (via rmarkdown)
#>
#> ─ Packages ───────────────────────────────────────────────────────────────────
#> package * version date (UTC) lib source
#> abind 1.4-5 2016-07-21 [2] CRAN (R 4.3.0)
#> affy 1.78.2 2023-07-16 [2] Bioconductor
#> affyio 1.70.0 2023-04-25 [2] Bioconductor
#> Biobase * 2.60.0 2023-04-25 [2] Bioconductor
#> BiocGenerics * 0.46.0 2023-04-25 [2] Bioconductor
#> BiocManager 1.30.22 2023-08-08 [2] CRAN (R 4.3.2)
#> BiocParallel * 1.34.2 2023-05-22 [2] Bioconductor
#> BiocStyle * 2.28.1 2023-09-14 [2] Bioconductor
#> bitops 1.0-7 2021-04-24 [2] CRAN (R 4.3.0)
#> bookdown 0.36 2023-10-16 [2] CRAN (R 4.3.2)
#> bslib 0.5.1 2023-08-11 [2] CRAN (R 4.3.2)
#> cachem 1.0.8 2023-05-01 [2] CRAN (R 4.3.1)
#> callr 3.7.3 2022-11-02 [2] CRAN (R 4.3.1)
#> cli 3.6.1 2023-03-23 [2] CRAN (R 4.3.1)
#> clue 0.3-65 2023-09-23 [2] CRAN (R 4.3.1)
#> cluster 2.1.4 2022-08-22 [3] CRAN (R 4.3.2)
#> codetools 0.2-19 2023-02-01 [3] CRAN (R 4.3.2)
#> colorspace 2.1-0 2023-01-23 [2] CRAN (R 4.3.1)
#> crayon 1.5.2 2022-09-29 [2] CRAN (R 4.3.1)
#> DelayedArray 0.26.7 2023-07-28 [2] Bioconductor
#> DEoptimR 1.1-3 2023-10-07 [2] CRAN (R 4.3.1)
#> desc 1.4.2 2022-09-08 [2] CRAN (R 4.3.1)
#> devtools 2.4.5 2022-10-11 [2] CRAN (R 4.3.2)
#> digest 0.6.33 2023-07-07 [2] CRAN (R 4.3.1)
#> doParallel * 1.0.17 2022-02-07 [2] CRAN (R 4.3.1)
#> dplyr 1.1.3 2023-09-03 [2] CRAN (R 4.3.1)
#> DT 0.30 2023-10-05 [2] CRAN (R 4.3.1)
#> ellipsis 0.3.2 2021-04-29 [2] CRAN (R 4.3.1)
#> evaluate 0.23 2023-11-01 [2] CRAN (R 4.3.2)
#> faahKO * 1.40.0 2023-04-27 [2] Bioconductor
#> fansi 1.0.5 2023-10-08 [2] CRAN (R 4.3.2)
#> farver 2.1.1 2022-07-06 [2] CRAN (R 4.3.1)
#> fastmap 1.1.1 2023-02-24 [2] CRAN (R 4.3.1)
#> foreach * 1.5.2 2022-02-02 [2] CRAN (R 4.3.1)
#> fs 1.6.3 2023-07-20 [2] CRAN (R 4.3.1)
#> generics 0.1.3 2022-07-05 [2] CRAN (R 4.3.1)
#> GenomeInfoDb 1.36.4 2023-10-02 [2] Bioconductor
#> GenomeInfoDbData 1.2.10 2023-08-06 [2] Bioconductor
#> GenomicRanges 1.52.1 2023-10-08 [2] Bioconductor
#> ggplot2 3.4.4 2023-10-12 [2] CRAN (R 4.3.2)
#> glue 1.6.2 2022-02-24 [2] CRAN (R 4.3.1)
#> gtable 0.3.4 2023-08-21 [2] CRAN (R 4.3.1)
#> highr 0.10 2022-12-22 [2] CRAN (R 4.3.1)
#> htmltools 0.5.7 2023-11-03 [2] CRAN (R 4.3.2)
#> htmlwidgets 1.6.2 2023-03-17 [2] CRAN (R 4.3.1)
#> httpuv 1.6.12 2023-10-23 [2] CRAN (R 4.3.2)
#> impute 1.74.1 2023-05-02 [2] Bioconductor
#> IRanges 2.34.1 2023-06-22 [2] Bioconductor
#> iterators * 1.0.14 2022-02-05 [2] CRAN (R 4.3.1)
#> jquerylib 0.1.4 2021-04-26 [2] CRAN (R 4.3.1)
#> jsonlite 1.8.7 2023-06-29 [2] CRAN (R 4.3.1)
#> knitr 1.45 2023-10-30 [2] CRAN (R 4.3.2)
#> labeling 0.4.3 2023-08-29 [2] CRAN (R 4.3.1)
#> later 1.3.1 2023-05-02 [2] CRAN (R 4.3.1)
#> lattice 0.22-5 2023-10-24 [3] CRAN (R 4.3.2)
#> lifecycle 1.0.3 2022-10-07 [2] CRAN (R 4.3.1)
#> limma 3.56.2 2023-06-04 [2] Bioconductor
#> magrittr 2.0.3 2022-03-30 [2] CRAN (R 4.3.1)
#> MALDIquant 1.22.1 2023-03-20 [2] CRAN (R 4.3.1)
#> MASS 7.3-60 2023-05-04 [3] CRAN (R 4.3.2)
#> MassSpecWavelet 1.66.0 2023-04-25 [2] Bioconductor
#> Matrix 1.6-1.1 2023-09-18 [3] CRAN (R 4.3.2)
#> MatrixGenerics 1.12.3 2023-07-30 [2] Bioconductor
#> matrixStats 1.0.0 2023-06-02 [2] CRAN (R 4.3.1)
#> memoise 2.0.1 2021-11-26 [2] CRAN (R 4.3.1)
#> mime 0.12 2021-09-28 [2] CRAN (R 4.3.0)
#> miniUI 0.1.1.1 2018-05-18 [2] CRAN (R 4.3.1)
#> minpack.lm 1.2-4 2023-09-11 [2] CRAN (R 4.3.1)
#> MsCoreUtils 1.12.0 2023-04-25 [2] Bioconductor
#> MsFeatures 1.8.0 2023-04-25 [2] Bioconductor
#> MSnbase * 2.26.0 2023-04-25 [2] Bioconductor
#> multtest 2.56.0 2023-04-25 [2] Bioconductor
#> munsell 0.5.0 2018-06-12 [2] CRAN (R 4.3.1)
#> mzID 1.38.0 2023-04-25 [2] Bioconductor
#> mzR * 2.34.1 2023-06-19 [2] Bioconductor
#> ncdf4 1.21 2023-01-07 [2] CRAN (R 4.3.0)
#> pander * 0.6.5 2022-03-18 [2] CRAN (R 4.3.2)
#> pcaMethods 1.92.0 2023-04-25 [2] Bioconductor
#> peakPantheR * 1.16.0 2023-11-04 [1] Bioconductor
#> pillar 1.9.0 2023-03-22 [2] CRAN (R 4.3.1)
#> pkgbuild 1.4.2 2023-06-26 [2] CRAN (R 4.3.1)
#> pkgconfig 2.0.3 2019-09-22 [2] CRAN (R 4.3.1)
#> pkgdown 2.0.7 2022-12-14 [2] CRAN (R 4.3.2)
#> pkgload 1.3.3 2023-09-22 [2] CRAN (R 4.3.1)
#> plyr 1.8.9 2023-10-02 [2] CRAN (R 4.3.1)
#> pracma 2.4.2 2022-09-22 [2] CRAN (R 4.3.2)
#> preprocessCore 1.62.1 2023-05-02 [2] Bioconductor
#> prettyunits 1.2.0 2023-09-24 [2] CRAN (R 4.3.1)
#> processx 3.8.2 2023-06-30 [2] CRAN (R 4.3.1)
#> profvis 0.3.8 2023-05-02 [2] CRAN (R 4.3.1)
#> promises 1.2.1 2023-08-10 [2] CRAN (R 4.3.1)
#> ProtGenerics * 1.32.0 2023-04-25 [2] Bioconductor
#> ps 1.7.5 2023-04-18 [2] CRAN (R 4.3.1)
#> purrr 1.0.2 2023-08-10 [2] CRAN (R 4.3.1)
#> R6 2.5.1 2021-08-19 [2] CRAN (R 4.3.1)
#> ragg 1.2.6 2023-10-10 [2] CRAN (R 4.3.2)
#> RANN 2.6.1 2019-01-08 [2] CRAN (R 4.3.1)
#> RColorBrewer 1.1-3 2022-04-03 [2] CRAN (R 4.3.0)
#> Rcpp * 1.0.11 2023-07-06 [2] CRAN (R 4.3.1)
#> RCurl 1.98-1.13 2023-11-02 [2] CRAN (R 4.3.2)
#> remotes 2.4.2.1 2023-07-18 [2] CRAN (R 4.3.1)
#> rlang 1.1.2 2023-11-04 [2] CRAN (R 4.3.2)
#> rmarkdown 2.25 2023-09-18 [2] CRAN (R 4.3.2)
#> robustbase 0.99-0 2023-06-16 [2] CRAN (R 4.3.1)
#> rprojroot 2.0.3 2022-04-02 [2] CRAN (R 4.3.1)
#> rstudioapi 0.15.0 2023-07-07 [2] CRAN (R 4.3.1)
#> S4Arrays 1.0.6 2023-08-30 [2] Bioconductor
#> S4Vectors * 0.38.2 2023-09-22 [2] Bioconductor
#> sass 0.4.7 2023-07-15 [2] CRAN (R 4.3.1)
#> scales 1.2.1 2022-08-20 [2] CRAN (R 4.3.1)
#> sessioninfo 1.2.2 2021-12-06 [2] CRAN (R 4.3.1)
#> shiny 1.7.5.1 2023-10-14 [2] CRAN (R 4.3.2)
#> shinycssloaders 1.0.0 2020-07-28 [2] CRAN (R 4.3.2)
#> stringi 1.7.12 2023-01-11 [2] CRAN (R 4.3.0)
#> stringr 1.5.0 2022-12-02 [2] CRAN (R 4.3.1)
#> SummarizedExperiment 1.30.2 2023-06-06 [2] Bioconductor
#> survival 3.5-7 2023-08-14 [3] CRAN (R 4.3.2)
#> systemfonts 1.0.5 2023-10-09 [2] CRAN (R 4.3.2)
#> textshaping 0.3.7 2023-10-09 [2] CRAN (R 4.3.2)
#> tibble 3.2.1 2023-03-20 [2] CRAN (R 4.3.1)
#> tidyselect 1.2.0 2022-10-10 [2] CRAN (R 4.3.1)
#> urlchecker 1.0.1 2021-11-30 [2] CRAN (R 4.3.1)
#> usethis 2.2.2 2023-07-06 [2] CRAN (R 4.3.1)
#> utf8 1.2.4 2023-10-22 [2] CRAN (R 4.3.2)
#> vctrs 0.6.4 2023-10-12 [2] CRAN (R 4.3.2)
#> vsn 3.68.0 2023-04-25 [2] Bioconductor
#> withr 2.5.2 2023-10-30 [2] CRAN (R 4.3.2)
#> xcms * 3.22.0 2023-04-25 [2] Bioconductor
#> xfun 0.41 2023-11-01 [2] CRAN (R 4.3.2)
#> XML 3.99-0.15 2023-11-02 [2] CRAN (R 4.3.2)
#> xtable 1.8-4 2019-04-21 [2] CRAN (R 4.3.1)
#> XVector 0.40.0 2023-04-25 [2] Bioconductor
#> yaml 2.3.7 2023-01-23 [2] CRAN (R 4.3.0)
#> zlibbioc 1.46.0 2023-04-25 [2] Bioconductor
#>
#> [1] C:/Temp/RtmpmeNQce/temp_libpath16f061135772
#> [2] C:/R/win-library/4.3
#> [3] C:/R/R-4.3.2/library
#>
#> ──────────────────────────────────────────────────────────────────────────────